Exploring Beyond Silver: IDTechEx Investigates Alternative Antimicrobial Approaches

By now, antimicrobial technologies are well known to the general public, being applied to products ranging from antimicrobial coatings to protect people from bacteria and viruses lingering on high-touch surfaces to antimicrobial infused shirts and socks to help limit malodor. IDTechEx’s market research report, “Antiviral and Antimicrobial Technology Market 2023-2033“, finds that though the field of antimicrobial technology is broad, the majority of established companies in the space focus on antimicrobial metal ions such as silver. Despite their high level of efficacy, there are several reasons to look beyond silver, such as concerns over its environmental impact. IDTechEx examines several alternative approaches in its report, following three central themes.

Bio-Based Antimicrobial Technologies

One of the approaches companies have taken in developing antimicrobial technologies beyond silver is to look towards nature for inspiration. Relatively few companies are active in this space, and each focuses on developing their own bio-based antimicrobial material. Recent product launches from major players may help to draw more attention to these bio-sourced alternatives, and the marketing often focuses on the materials’ sustainability and eco-friendliness. Examples of commercialized products include plant-based antimicrobials such as citric acid and essential oils from thyme and peppermint, all of which have been known for decades for their antimicrobial properties.

Another bio-based approach, one that is not yet commercialized, involves the use of immobilized antimicrobial peptides (AMPs). AMPs are short amino acid sequences found in nature that have broad antimicrobial efficacy. While promising, the majority of research and development into AMPs focus on therapeutic applications. For example, several antibiotics on the market today are AMPs.

Immobilizing Disinfectants 

Outside of immobilizing silver ions, companies have also commercialized technologies that leverage commonly used disinfectants. The most widely commercialized antimicrobial technology based on this approach is, of course, silane quaternary ammonium compounds, where the silane moiety enables the functionalization of surfaces with a covalently attached disinfectant, the quaternary ammonium. Si-quats, as they are also known, are the second most common antimicrobial technology after silver.

The key difference between antimicrobials such as silver and disinfectants is the potential for a speedier response to microorganisms. Disinfectants act much more quickly than antimicrobials, in the order of minutes versus hours. Outside of utilizing polymerization chemistry to immobilize disinfectant compounds, other approaches include the immobilization of depots from which disinfectants such as hydrogen peroxide can be stored and released, as well as surfaces that are especially designed to capture and release chlorine. Unlike the depot, which can be depleted, the latter approach allows for regular renewable of the surface using commonly available chlorine-containing sanitizers.

Generating Reactive Oxygen Species

A third approach of interest is the photocatalytic creation of reactive oxygen species (ROS). ROS are routinely produced by living organisms as a part of their natural defense. For example, several cell types within the human immune system, including neutrophils and mononuclear phagocytes, produce ROS to fight invading microorganisms. Commercialized antimicrobial technologies that leverage the destructive effect of ROS typically utilize photocatalysis to generate the ROS. The most common approach is to utilize titanium dioxide, which catalyzes the reaction of ROS upon exposure to UV light. While there are many positives associated with the use of titanium dioxide, such as the fact that it is not depleted in the creation of ROS, it is environmentally friendly, sustainable, low cost, and has a low possibility of generating antimicrobial resistance. The most obvious fact is that the surface only works when exposed to UV light.

IDTechEx’s latest report on antiviral and antimicrobial technologies analyzes over 100 companies active in this area, including companies developing the technologies listed in this article. To find out more about this report, including downloadable sample pages, please visit www.IDTechEx.com/antimicrobial.

About IDTechEx

IDTechEx guides your strategic business decisions through its Research, Subscription and Consultancy products, helping you profit from emerging technologies. For more information, contact [email protected] or visit www.IDTechEx.com.

Media Contact:

Lucy Rogers
Sales and Marketing Administrator
[email protected]
+44(0)1223 812300

Social Media Links:

Twitter: www.twitter.com/IDTechEx
LinkedIn: www.linkedin.com/company/IDTechEx

Logo – https://mma.prnewswire.com/media/478371/IDTechEx_Logo.jpg


I want to grow my online platform to create awareness about ethical consumerism, environmentalism, and the plant-based lifestyle. My main mission is to share information that empowers people to make better choices and create a VEG NEW WORLD :)

Your support is vital and is helping me share the collected information with thousands of readers and viewers. I try to deliver exclusive stories and relevant content in a challenging commercial environment. Your contribution helps me to cover the costs that my service requires. Please consider contributing (no matter how small) to keep the information flowing so you can remain informed and have life changing interviews and stories to share.

Related articles

IKEA Recognized as One of Canada’s Greenest Employers for Prioritizing People and the Planet

  The home furnishing retailer is recognized for the 16th consecutive...

Steakholder Foods Announces ADS Ratio Adjustment

  Steakholder Foods Ltd. (Nasdaq: STKH), a leading innovator in 3D-printed...


  -- Recreational classes will be available to study wine,...
Adrienn Sarkany
Adrienn Sarkanyhttps://vegnew.world/
Hello there! I'm a 21-year-old university student majoring in Finnish and Korean Language and Literature. I have a deep passion for art and a profound connection to the natural world. My journey through life has been a colorful one, driven by my love for creativity, music, and the wonders of the great outdoors. As a dedicated student, I've already earned a degree in Classic Cantos, a testament to my appreciation for the timeless beauty of classical music. Beyond the classroom, my artistic spirit thrives through my love for painting and drawing. These creative outlets allow me to express my thoughts and emotions, transforming blank canvases into vibrant stories. My interests go far beyond music and art. Singing, playing the piano, and exploring new melodies are integral parts of my life, providing me with both solace and exhilaration. When I'm not immersed in the world of art and music, I find solace in nature's embrace. My heart is drawn to animals and the serene beauty of the natural world, fueling my desire to protect and preserve our precious environment.


Please enter your comment!
Please enter your name here